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Abstract

This paper presents new methods for identifying the convective heat transfer on a flat plate using analytical models based on the
Green functions theory. The air flows over a flat plate heated by applying a controlled and transient radiative heat flux to one of its
surfaces. On the opposite surface, the plate is cooled down by another air flow. The temperature profile of the plate surface is determined
with an infrared camera when the plate is exposed to the controlled heat flux. Green functions are used to determine analytical solutions
for the heat flux equation in the plate. These analytical solutions allow the transient convective heat transfer to be identified.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Knowledge of heat transfer coefficients and their cor-
rect use is essential for optimizing the design of industrial
processes involving convective heat transfer. The convec-
tive heat transfer coefficient is often estimated experimen-
tally by coupling the wall heat flux measurement with that
of the temperature of the wall over which the fluid flows.
In most cases, the coefficient is determined when the
steady-state thermal boundary conditions are reached
[1]. In transient state experimentation with solid materials,
simple thermo-kinetic models, based on the flash method
[2–6] applied to a semi-infinite wall, are the most used.
In most cases, using this method requires measuring
the temperature and/or the heat flux on the surface
subjected to thermal excitation and airflow. Such a
method is not without drawbacks, however, since the ther-
mal excitation can perturb thermal and dynamic boundary
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layers, as well as wall temperature and/or wall heat flux
measurements.

This article proposes theoretical thermo-kinetic models
to experimentally determine the heat transfer coefficient
in a transient state. In steady-state conditions, this coeffi-
cient incorporates both the flow properties and thermal
properties of the fluid and the wall, and is expressed by
Newton’s law as u = h(Tw � T1), where h refers to the
convective heat transfer coefficient. In transient-state con-
ditions, and in the absence of complementary data, this
Newton formulation tends to be extrapolated. However,
in many cases, especially when boundary conditions are
time dependant, this formulation appears to be inadequate,
and an unsteady approach is needed.

In order to validate our theoretical models, an experi-
mental study of the well-known flat plate exposed to a
laminar airflow was carried out. The plate was heated on
the surface opposite the airflow, and the instantaneous sur-
face temperature was measured. Our objective was to
develop identification models suitable for identifying the
heat transfer coefficients in more complex geometries, such
as the wide-ranging backward facing step, in which
improving the downstream heat transfer is of paramount
interest in many industrial applications.
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Nomenclature

a thermal diffusivity (m2/s)
e flat plate thickness (m)
f(t) wall temperature (�C)
G Green function
G Laplace transform of quantity G

hi heat transfer coefficient on the heated surface
(W/m2 K)

he heat transfer coefficient on the upper surface
(W/m2 K)

l length m
m0 zero-order temperature moment (K s)
S temperature sensitivity (K/(W/m2) or K m)

Sbi reduced temperature sensitivity to bi ¼ bi
oh
obi

� �
(K)

t time (s)
T1 ambient temperature (�C)
T0 initial temperature (�C)
x space variable (m)

Greek symbols

an Laplacian eigenvalues
e emissivity

n space variable in Laplace space
d(t) Dirac distribution
d spacing (m)
u0 heat flux density (W/m2)
k thermal conductivity (W/m K)
h(x,t) temperature difference (=T(x,t) � T1) (K)
�h Laplace transform of h

Subscripts and superscripts

cv convection
cd conduction
e upper
i lower
r radiation

Dimensionless numbers

Nu Nusselt number
Pr Prandtl number
Ra Rayleigh number
S* normalized sensitivity ¼ S�minðSÞ

maxðSÞ�minðSÞ

� �

0
e
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2. Experimental methodology and setup

2.1. Experimental methodology

One of the surfaces (lower) of a flat plate made of a
homogeneous material was heated during a time t1 using
a uniform and constant radiative heat flux u0, while a
known and imposed airflow (U,T1) flowed over the other
side (upper) of the plate (see Fig. 1). During this time, the
surface temperature of the upper face was measured. The
temperature field in the plate, denoted T(x, t), was assumed
to be unidirectional. Using the thermo-kinetic models pro-
posed in this paper, the heat transfer coefficient of the
upper face he was then identified.
x

Fig. 1. Schematic presentation of the plate boundary conditions.

2.2. Experimental setup

The main element in the experimental setup [7] was a
rectangular plexiglass� test section, measuring 145 mm in
height, 300 mm in width and 2 m in length (see Fig. 2). A
fan with a variable flow rate was used to impose the air-
flow. This fan was placed at the outlet of the test section
in order to reduce airflow perturbation. An convergent sec-
tion and a honey comb were placed at the inlet of the test
section. The flat plate studied—a 4-mm thick pyrex slab
measuring 170 · 210 mm2—was placed at the bottom of
the test section as shown on Fig. 2. A set of short wave-
length infrared lamps with low inertia and adjustable
power was used to heat the plate. This heating system sup-
plied a constant and controlled radiative heat flux to the
flat plate. The heat flux was concentrated on the lower
surface of the plate by means of an aluminium convergent
section. A fluorspar (CaF2) window was placed in front of
the upper surface of the plate. Because fluorspar has a high
transmission coefficient in the infrared wavelength, we were
able to use infrared measurement techniques to calculate
temperature. The fluorspar transmission coefficient was
calibrated for the wavelength range of the IR camera
(2–5.4 lm); this coefficient, equal to sf = 0.95 ± 0.01,
remained constant.



Short wavelength infrared
        heating system

Heated plate

Infrared Camera

fluorspar window
Honeycomb

Fig. 2. Experimental Setup.
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2.3. Temperature measurement

The surface temperature of the upper surface of the flat
plate (over which the air flows) was determined using a
short wavelength infrared camera (2–5.4 lm) equipped
with a 20� lens. With an acquisition frequency of 35 Hz,
this camera gives a signal I(T) for a black body surface
at a temperature T observed through a transparent envi-
ronment. While measuring, the camera returns a digital sig-
nal from an elementary surface of the flat plate. Attenuated
by the CaF2 window and the atmosphere this signal takes
the environmental radiation reflected on the plate into
account [8].

The surface of the plate that was heated was painted
black to increase the proportion of absorbed heat flux
emitted by the short wavelength infrared lamps. The black
paint also served to improve the part of radiative heat flux
emitted by the plate and to increase its emissivity. This
emissivity, determined by calibration, was 0.93 ± 0.02. A
second calibration allowed the signal intensity I(T) to be
linked to the real temperature of the plate, in a real situa-
tion. Temperature uncertainty was estimated at DT =
±0.3 �C for a temperature range from 30 to 100 �C. The
temperature of the air in the test room was measured using
two type K thermocouples, with an absolute error of about
DT = ±0.5 �C.
2.4. Heat flux estimation

The heat flux density was estimated through direct mea-
surement of the radiative heat flux on the heated plate
surface. Measurements were carried out with Captec radi-
ant flux sensor. This sensor measures 10 mm wide and
300 lm thick, and has an integrated type-T thermocouple.
With a response time of about 100 ms, the sensor’s active
elements are directly sensitive to radiative net heat flux,
and thus permit the thermal flux to be balanced on the
heated surface. The sensor can be used at temperatures
ranging from �200 and 250 �C, and has a linear sensitivity
to radiative heat flux density gauged at about 0.5 mV/
(W/m2). The relative uncertainty on the heat flux measure-
ment depends directly on the uncertainty of the measured
voltage: if S is the sensor sensibility, u = u/S, where Du/
u = Du/u = 0.5 %. In addition, the sensor allows tempera-
ture and radiative heat flux to be measured independently.

The sensors were calibrated at the laboratory on a spe-
cific device, but were used appropriately in other situations
[9]. They were able to achieve a balance of the radiative
heat flux on the irradiated surface of the plate. The relative
uncertainty of the measurement remains lower than 5% for
the range of heat flux variation in our experiment.
3. Analytical models for identifying he

In its initial state, the whole system was assumed to be at
temperature T1. This initial temperature is used to define
the temperature difference h as h(x, t) = T(x,t) � T1. The
heat flux propagation in the plate was assumed to be unidi-
rectional and to follow the law of conduction, thus,

1

a
oh x; tð Þ

ot
� o2h x; tð Þ

ox2
¼ 0 ð1Þ

where the initial condition is h(x, 0) = 0.
Two types of boundary conditions were investigated

because they were able to provide he in different ways.
The first type of boundary conditions assumes a constant
heat transfer coefficient on both surfaces (heated and
unheated). The second type assumes the temperature of
the unheated face and the heat transfer coefficient of the
heated face are both time dependent and known. The
Green functions used to solve this problem are governed
by Eq. (1) [7] and must verify

1

a
oG
ot

x; n; tð Þ � o
2G

ox2
ðx; n; tÞ ¼ dðx� nÞdðtÞ ð2Þ

with G(x,n, t)= 0 if t 6 0 and appropriate boundary condi-
tions (defined later on in terms of the case being investi-
gated), the Laplace transforms of Eqs. (1) and (2) yield

p
a

�h x; pð Þ � 1

a
hðx; 0Þ � o2h

ox2
ðx; pÞ ¼ 0

p
a

Gðx; n; pÞ � o
2G

ox2
ðx; n; pÞ ¼ dðx� nÞ

8>>><
>>>:

ð3Þ

Multiplying the first equation by G(x,n,p) and the second
by �h(x,p), Eq. (3) becomes

p
a

�hG� 1

a
hðx; 0ÞG� G

o2�h
ox2
¼ 0

p
a

G�h� �h
o2G
ox2
¼ �hdðx� nÞ

8>>><
>>>:

ð4Þ

Subtracting Eq. (4) produces the following equation:

1

a
hðx; 0ÞGþ G

o2�h
ox2
� �h

o2G
ox2

� �
¼ �hdðx� nÞ ð5Þ
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Integrating each part of the equation over x(0 6 x 6 e),Z e

0

�hðx; pÞdðx� nÞdx ¼
Z e

0

Gðx; n; pÞ
a

hðx; 0Þdx

þ
Z e

0

G
o

2�h
ox2
� �h

o
2G

ox2

� �
dx ð6Þ

given that
R e

0
�hðx; pÞdðx� nÞdx ¼ �hðn; pÞ, and expanding the

second integral into the right-hand side of Eq. (6) yields

�hðn;pÞ ¼
Z e

0

Gðx;n;pÞ
a

hðx;0Þdx

þ
Gðe;n;pÞ o�h

ox ðx;pÞjx¼e� �hðe;pÞ oG
ox ðx;n;pÞjx¼e

�Gð0;n;pÞ o�h
ox ðx;pÞjx¼0þ �hð0;pÞ oG

ox ðx;n;pÞjx ¼ 0

" #

ð7Þ
3.1. Identification of he (Model 1)

As stated above, the first model investigated assumes
constant heat transfer coefficients on both surfaces (heated
and unheated). This assumption will be justified at the end
of this section. The boundary condition on the heated
surface (x = e) can thus be written

oh
ox
ðx; tÞjx¼e ¼ �H 0

i hðe; tÞ þ
u0

k
ð8Þ

where

H 0
i ¼

h0
i

k
ð9Þ

u0 in Eq. (8) corresponds to the radiative heat flux density
of the plate and the H 0

i in Eq. (9) is a constant.
The boundary condition assumed for the other side of

the plate (x = 0) is

ohðx; tÞ
ox

����
x¼0

¼ H 0
ehðx; tÞjx¼0 ð10Þ

where H 0
e ¼

h0
e

k
¼ h0

ec þ h0
er

k
, with h0

ec and h0
er being, respec-

tively, the convective and radiative heat transfer coeffi-
cients, which are assumed to be constant. (This
assumption will also be justified later in this paper.) The
Green function solving this problem must satisfy the
following boundary conditions:

oG
ox
ðx; n; tÞjx¼0 ¼ H 0

eGð0; n; tÞ

oG
ox
ðx; n; tÞjx¼e ¼ �H 0

i Gðe; n; tÞ

8><
>: ð11Þ

By replacing the initial condition and the boundary condi-
tions in (7), we obtain:

�hðx; pÞ ¼ 1

k
Gðe; x; pÞuiðpÞ ð12Þ

The inverse Laplace transform can be used to produce the
temperature profile

hðx; tÞ ¼ 1

k

Z t

0

uiðsÞGðe; x; t � sÞds ð13Þ
In order to find the Green function which solves this prob-
lem, the Laplace transform of Eq. (2) is used (cf. Eq. (3),
yielding

Gðx; n; pÞ ¼ a
X1
n¼1

wnðxÞwnðnÞ
p þ aa2

n

ð14Þ

where wn and an are, respectively, the eigenfunctions and
the eigenvalues of the Laplacian operator [7,10,11]. The
eigenfunctions wn are defined as

wnðxÞ ¼ An cosðanxÞ þ Bn sinðanxÞ ð15Þ

and must satisfy the following boundary conditions for
x = 0 and x = e

dwnðxÞ
dx

����
x¼0

¼ H 0
ewnð0Þ

dwnðxÞ
dx

����
x¼e

¼ �H 0
i wnðeÞ

8>>>><
>>>>:

ð16Þ

Using (15) and (16), the following transcendent equation
can be obtained for the eigenvalues:

tan ane ¼ anðH 0
i þ H 0

eÞ
a2

n � H 0
i H 0

e

ð17Þ

and for the eigenfunctions,

wnðxÞ ¼
Bn

H 0
e

an cosðanxÞ þ H 0
e sinðanxÞ

� �
ð18Þ

Solving Eq. (17) produces an infinite number of discrete
eigenvalues, and normalizing the eigenfunctions wn(x)R e

0
w2

nðxÞdx ¼ 1
	 


allows Bn to be determined

B2
n ¼

2H 02

e

H 0
i þ H 0

e þ eða2
n þ H 02

e Þ
ð19Þ

The end result is the following equation:

Gðx; n; tÞ ¼ a
X1
n¼1

B2
n

H 02

e

an cosðanxÞ þ H 0
e sinðanxÞ

� �

� an cosðannÞ þ H 0
e sinðannÞ

� �
e�aa2

nt ð20Þ

The temperature distribution h(x, t) in the flat plate is ob-
tained by introducing the Green function in Eq. (20) into
Eq. (13), yielding

hðx; tÞ ¼ u0

k

X1
n¼1

B2
n

H 02

e

cosðaneÞ þ H 0
e

an
sinðaneÞ

� �(

� cosðanxÞ þ H 0
e

an
sinðanxÞ

� �
1� e�aa2

nt
� �)

ð21Þ

h(x, t) is continuous.



Fig. 3. Reduced temperature sensitivity to He, Hi and u0, respectively,
over time for different values of He (k = 1.13 W/m K).
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We can thus demonstrate

X1
n¼1

B2
n

H 02
e

cos aneð Þ þ H 0
e

an
sinðaneÞ

� �

� cosðanxÞ þ H 0
e

an
sinðanxÞ

� �
¼

xþ 1
H0

e

� �
1þ H 0

i eþ H 0
i =H 0

e

ð22Þ

We can also demonstrate that when t tends towards
infinity, the temperature profile tends towards a limit that
is not time-dependant and that corresponds to the steady
state.

lim
t!1

hðx; tÞ ¼ u0=k

1þ H 0
i eþ H 0

i =H 0
e

xþ 1

H 0
e

� �
ð23Þ

Please note that in steady-state conditions, the same
result produced with Eq. (23) can be reproduced using
thermal resistances.

This first model aims to identify the heat transfer coeffi-
cient of the upper surface of the plate without having to
wait for steady-state conditions. In this model, the heat
transfer coefficients of both surfaces are assumed to be
constant and equal to their values in steady state.

The heat transfer coefficient is determined by comparing
the experimental zero-order temperature moment and the
theoretical zero-order temperature moment obtained using
Eq. (21). This zero-order moment is defined as

m0ðx; tfÞ ¼
Z tf

0

hðx; tÞdt ð24Þ

The time tf, used as upper bound in this integral, is
determined using the temperature sensitivity [12] to param-
eters such as He, Hi or u0. These reduced sensitivities are
defined as

Sbi
¼ bi

oh
obi

; where bi ¼ He;H i or u0 ð25Þ

The sensitivity values provide information about the
error estimations and the possible correlations between
parameters [12]. Fig. 3 plots the evolution of the reduced

and normalized temperature sensitivity (S�bi
¼

Sbi
�Smin

bi

Smax
bi
�Smin

bi

Þ to

He, Hi or u0 over time for different values of He. These
quantities are evaluated using Eqs. (24) and (21). As shown
in Fig. 3, the temperature sensitivity to He is maximum for
a time equal to about 360 s, if He = 13.2 W/m2 K, for
instance; this time value decreases as he increases. In addi-
tion, for the same He = 13.2 W/m2 K, the temperature sen-
sitivity to Hi is maximum for a time equal to about 750 s,
whereas the temperature sensitivity to u0 is maximum
for longer time periods (t > 1000 s, i.e., in steady-state
conditions).

According to the graphs in Fig. 3, estimating he is possi-
ble when the observed time remains lower than a certain
value of tf, which depends on he. Nevertheless, whatever
the tf value, the shortest time must be chosen. Indeed, the
longer this time, the more significant the influence of hi

and u0. The validity of this model depends on small tem-
perature variations in the plate to avoid significant changes
in the values of the heat transfer coefficient (assumed to be
constant). (This assumption will also be discussed at the
end of this section.)

In order to determine he, the coefficient’s order of mag-
nitude must be known. To do so, an iterative method can
be used, starting with an arbitrary value of he. This value
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allows the time tf (cf. Eq. (24))—corresponding to the time
when the sensitivity to he is maximum—to be determined.
Given the temperature sensitivity to hi, it is prudent
to choose a lower value for tf, such as tf/4. This lower
value insures that the temperature profile will be less
dependent on Hi and u0 than it would be at larger tf values.
Indeed, for time tf/4, the influence of Hi is lower than for
larger time values (cf. Fig. 3). Thus, identifying the exper-
imental and theoretical zero-order moment allows a new
value for he to be determined. The iterative method pre-
sented above can be applied repeatedly until a stable value
for he is obtained. This value corresponds to the steady-
state value of he, obtained without having to wait for
steady-state conditions since only the initial instants are
considered.

The heat transfer coefficient (hi) is not initially equal to
its steady-state value, but its variation (as well as the
variation of the connected heat flux density) remains low
compared to the heating heat flux density. In addition, as
shown in the Fig. 3, the influence of hi on the temperature
profile of the upper plate surface is initially less significant
than the influence of he. Thus, the result is not only a con-
sequence of the choice of hi, but also a compromise
between this choice and the sensitivity of the model to this
hi quantity (Fig. 3). In fact, the shape of the curve plotting
the temperature of the upper surface is initially imposed
primarily by he, and consequently this parameter can be
identified.

Using the experimental setup described in Section 2,
three different airspeeds were tested (U1 = 0 m/s, 0.5 m/s,
and 1 m/s). Measurements using hot wire anemometry
show that the boundary layer is a laminar flow at all 3
airspeeds. Fig. 4 depicts the early instants (t < 150 s) of
the typical temporal evolution of the temperature difference
for an airspeed of 1 m/s, measured experimentally on both
surfaces of the plate. Table 1 presents the values obtained
for he using the iterative method presented above. This
table also compares the he values to the values obtained
using model 1 (hth

e Þ and to those obtained using literature
correlations ðhcorr

e Þ [13–16].

• Forced convection (ReL < 3105)

hcorr
e ¼ 0:664

k
L

Re1=2
L Pr1=3 þ

er T ð0;1Þ4 � T 4
1

� �
T ð0;1Þ � T1

ð26Þ

• Free convection (105 < RaL < 107)

hcorr
e ¼ 0:54

k
L

Ra1=4
L þ

er T ð0;1Þ4 � T 4
1

� �
T ð0;1Þ � T1

ð27Þ
The values obtained for hth
e were computed using the

Nelder–Mead simplex algorithm [17], which minimizes
the quadratic error between the experimental and theoret-
ical zero-order temperature moments. These values con-
form to the correlations since the relative error remains
lower than 3.5% in steady-state conditions, making this
method appropriate for identifying the steady-state heat
transfer coefficient (he). The originality of our method is
that, regardless of the conductivity or the thickness of the
plate considered, it is not necessary to wait until the system
achieves a steady state to identify the heat transfer coeffi-
cient. Still, although it is true that increasing plate thick-
ness or decreasing plate conductivity does not affect the
validity of this theoretical model, it does decrease the
amplitude of the external (non-heated) surface tempera-
ture, which can decrease the accuracy of the procedure.
To avoid this problem, it is necessary to find a good com-
promise between e, k and u0.

The assumption on which this first model is based is dis-
cussed below. As shown in Fig. 4, the experimental temper-
ature variation on the lower surface of the plate is not very
significant in the early instants compared to the variations



Table 1
Comparison of the values obtained for he using model 1 ðhth

e Þ and those obtained using correlations ðhcorr
e ¼ hcv

e þ hr
eÞ

Airspeed (m/s) hth
e (W/m2 K) hcv

e (W/m2 K) hr
e (W/m2 K) hcorr

e (W/m2 K) % he = Dhe/he

1 16.8 9.22 7.69 16.91 0.6
0.5 14.7 6.52 7.69 14.21 3.5
0 12.6 5.12 7.67 12.79 1.5
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that occur later on. Fig. 4 also shows the variation of the
heat transfer coefficient for the upper and lower surface
of the plate obtained using experimental measurements
and literature correlations [13–16]. Indeed, the variation
of this coefficient (Dhi � 2.5 W/m2 K for the first 150 s)
and the heat flux variation connected to this coefficient
(Dui � 90 W/m2) are both negligible compared to the
heat flux u0 used for heating (about 2500 W/m2). The
same explanation justifies the assumption made for
he (Dhe � 1 W/m2 K and thus Due � 35 W/m2 for the
first 150 s). Indeed, during the first instants, while the tem-
perature of lower surface of the plate is increasing, the
upper plate surface temperature increases less due to the
propagation time. Therefore, in the case of the first model,
the assumption is justified only for the initial and the
steady-state periods, and both He and Hi can be assumed
constant.
3.2. Identification of he (Model 2)

Our second model assumes that the surface temperature
on the non-heated surface (x = 0) and the heat flux density
on the heated surface (x = e) are both known. Thus, Eqs.
(1)–(7) remain valid. Only the boundary conditions change.
The boundary conditions on both surfaces can now be
written

hð0; tÞ ¼ f ðtÞ and
oh
ox
ðe; tÞ ¼ u0 � hihðe; tÞ

k
ð28Þ

The main advantage of model 2 over model 1 is that it
requires no assumptions about he, particularly as concerns
its time dependence. This second he identification method
requires a relatively long experiment time. Unlike model
1, in which estimation is carried out for shorter times,
model 2 assumes hi to be time dependent. Thus, this second
model is designed to take the time variation of hi into
account. Here, hi can be divided into 2 parts, where the first
part remains stationary ðh0

i Þ, and the second part expresses
the time variation (dhi)

hiðtÞ ¼ h0
i þ dhiðtÞ ¼ h0

i þ
1iðtÞ

hðe; tÞ ð29Þ

The boundary conditions used for the Green function
are

Gð0; n; tÞ ¼ 0

oG
ox
ðx; n; tÞjx¼e ¼ �H 0

i Gðe; n; tÞ

8<
: ð30Þ
Like in model 1, Eq. (7) (which remains valid) yields

�hðn; pÞ ¼ 1

k
Gðe; n; pÞðuiðpÞ � 1iðpÞÞ þ f ðpÞ oG

ox
ðx; n; pÞjx¼0

ð31Þ

The temperature of the plate is given by an inverse Laplace
transform

hðx; tÞ ¼ 1

k

Z t

0

ðuiðsÞ � 1iðsÞÞGðe; x; t � sÞds

þ
Z t

0

f ðsÞ oG
on
ð0; x; t � sÞds ð32Þ

By integrating Eq. (2) over x from 0 to e and using the
boundary conditions, this Eq. (2) becomes

oG
ox
ð0; x; tÞ ¼ �H 0

i Gðe; x; tÞ � 1

a

Z e

0

oG
ot
ðn; x; sÞdnþ dðtÞ

ð33Þ

Using this expression in Eq. (32),

hðx; tÞ ¼ f ðtÞ þ 1

k

Z t

0

½uiðsÞ � 1iðsÞ � h0
i f ðsÞ�

�Gðe;x; t� sÞds� 1

a

Z t

0

f ðsÞ
Z e

0

oG
ot
ðn;x; t� sÞdn

� �
ds

ð34Þ

As in model 1, Gðx; n; tÞ ¼ a
P1

n¼1wnðxÞwnðnÞ expð�aa2
ntÞ.

The eigenfunctions (wn) or eigenvalues (an) must still satisfy
Eq. (15). Only the boundary conditions at x = 0 and at
x = e change. Thus,

wnð0Þ ¼ 0

dwn

dx
ðxÞ
����
x¼e

þ H 0
i wnðeÞ ¼ 0

8<
: ð35Þ

Introducing Eq. (15) into Eq. (35) leads to both the tran-
scendental equation for the eigenvalues an

an cotðaneÞ ¼ �H 0
i ð36Þ

and the transcendental equation for the eigenfunctions
wn(x)

wnðxÞ ¼ Bn sinðanxÞ ð37Þ

Solving the transcendental Eq. (35) and normalizing the
eigenfunctions wn(x) allows Bn to be identified

B2
n ¼ 2

a2
n þ H 02

i

e a2
n þ H 02

i

� �
þ H 0

i

ð38Þ
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Finally,

Gðx; n; tÞ ¼ a
X1
n¼1

B2
n sinðanxÞ sinðannÞe�aa2

nt ð39Þ

where an and Bn are, respectively, the results of Eqs. (36)
and (38).

The heat transfer coefficient he of the upper surface of the
flat plate can be defined as

he ¼
k oh

ox ðx; tÞ
hðx; tÞ

����
x¼0

ð40Þ

By defining the radiative heat flux exchange between the
plate and the environment as

urð0; tÞ ¼ erðT 4ð0; tÞ � T 4
1Þ; ð41Þ
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Fig. 5. Comparison between the measured and calculated temperature on
the lower surface.

Fig. 6. Evolution of the heat flux density over time o
the convective heat transfer coefficient can be obtained

hecðtÞ ¼
k oh

ox ð0; tÞ � urð0; tÞ
hð0; tÞ ¼

k oh
ox ð0; tÞ � erðT 4ð0; tÞ � T 4

1Þ
hð0; tÞ

ð42Þ

Fig. 5 plots evolution of the temperature difference on
the lower surfaces of the plate (hth

i ) calculated using this
second model (Eq. (34)) and the results obtained experi-
mentally (hexp

i and hexp
e ). Using the experimental boundary

conditions for both surfaces, hth
i was obtained by comput-

ing Eq. (39), which provides the Green function and its
partial derivative versus time. The temperature profile
was obtained directly using a convolution integral between
these quantities (G, hi, f, . . .). As shown in Fig. 5, the con-
currence between the experimental and theoretical temper-
ature profiles obtained is quite good. The same concurrent
trend was observed in other tests carried out with other
velocities (0 and 0.5 m/s). In light of these considerations,
this model appears to be appropriate for analyzing the
thermal behavior of a heated plate, especially for identify-
ing the heat transfer of the non-heated surface (in this case,
the upper surface, x = 0).

Fig. 6 presents evolution of the heat flux at x = 0 (ue,
non-heated surface) and of the absorbed heat flux at
x = e (ui = u0 � hi(t)h(e, t), heated surface). This graph
represents a test in which the air flows at 1 m/s over the
upper surface. The same trend as for v = 1 m/s was
observed for other velocities (v = 0 and v = 0.5 m/s). The
heat flux ue was obtained using Eq. (34) and a forward dif-
ference at x = 0, thus yielding 2nd order precision. ui was
obtained experimentally. In this figure, both the heat flux
density plots have the same general trend: an initial and
abrupt increase of the heat flux density up to a maximum
(corresponding to about u0), caused by the inertia of the
heating system. This increase is followed by a slight
n both surfaces (x = 0 and x = e) for v = 1 m/s.



Fig. 7. Evolution of the heat transfer coefficient over time for different airflows.

Table 2
Comparison of the values obtained for he in steady-state conditions ðhth

e Þ using model 2 and those obtained using correlations ðhcorr
e ¼ hcv

e þ hr
e)

Airspeed (m/s) hth
e (Model 1) (W/m2 K) hth

e (Model 2) (W/m2 K) hcv
e (W/m2 K) hr

e (W/m2 K) hcorr
e (W/m2 K) % he = Dhe/he

1 16.8 16.78 9.22 7.69 16.91 0.7
0.5 14.7 14.45 6.52 7.69 14.21 1.7
0 12.6 13.24 5.12 7.67 12.79 3.5
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decrease due to the rise in plate temperature which
promotes the radiative and convective heat transfer from
the plate to the environment. For the non-heated surface,
there is a delay corresponding to the propagation of this
heat flux. Logically, in steady-state conditions, both the
heat flux densities tend towards the same values.

Fig. 7 plots the evolution of the heat transfer coefficient
on the upper surface of the plate, defined using Eq. (42).
Generally, this coefficient initially increases to reach a
maximum value for a very short time. Then, it decreases,
tending towards a limited value corresponding to the
steady-state value of he. This initial trend can be explained
by the definition of he as defined in Eq. (42), which entails a
singularity at time t = 0. Indeed, although the whole plate
is initially at T1 (i.e., h(0, t � 0) � 0 and T ð0; t � 0Þ4�
T 4
1 � 0), the heat flux increases rapidly (Fig. 6). Thus,

the ratio of these quantities (see Eq. (42)) has high values.
As shown in Fig. 7, the three air velocities on the plate (0,
0.5 and 1 m/s) all exhibit the same decreasing trend.

The values of he obtained in steady-state conditions with
the second model are presented in Table 2 and compared to
those obtained using correlations. Like the values for the
first model, these values concur since the relative error
remains lower than 3.5% in steady-state conditions. In
addition, unlike the first model, the second allows the time
evolution of this he coefficient to be obtained, though this
does require knowing the temperature of the non-heated
surface. Still, sensitivity studies of the second model show
that it is not suitable for rapid estimations of he since the
sensitivity maximum is reached when t tends towards infin-
ity, and the system must remain in steady-state conditions
throughout the relatively long experimentation time.

4. Conclusion

This article presented two identification methods for
convective heat transfer. In order to validate our models,
we studied the well-known case of the flat plate with an
imposed heat flux and/or temperature conditions on its
surfaces. Coupled with experimental data, our models
allowed us to identify the wall heat flux and the heat trans-
fer coefficient. Green functions were used in the mathemat-
ical model employed in this identification since they allow
the wall heat flux to be determined directly and rigorously,
thus avoiding the need to measure the flux with the poten-
tial for disturbing the thermal boundary layer which that
entails. In the first model presented, the convective heat
transfer coefficient h0

i remains constant, which is correct
in the early instants or in steady-state conditions.

This model allows the steady-state heat transfer coeffi-
cient on the non-heated surface to be identified without
having to wait for steady-state conditions. The second
model allows the heat transfer coefficient in transient con-
ditions to be identified using a non-intrusive technique to
determine boundary conditions. The steady-state values
obtained using these two models were compared and
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were found to concur. This study, which validates our
identification method on a well-know case, is the first phase
in a more complex project aiming to estimate the heat
transfer coefficient.
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